

## **JBD-1603010102010100** Seat No. \_\_\_\_\_

## M. Sc. (Sem. I) (CBCS) Examination

December - 2019

CT - 01 : Physics

(Mathematical Physics and Classical Mechanics)

| Time  | : 2   | $\frac{1}{2}$ Hours] [Total Marks : '                                                                                | 70      |
|-------|-------|----------------------------------------------------------------------------------------------------------------------|---------|
| Insti | ructi | ions: (1) Attempt all questions.  (2) All questions carry equal marks.  (3) Mathematical symbols have equal meanings | 8.      |
| 1     | Ansv  | wer in brief any seven :                                                                                             | 14      |
|       | (a)   | Define differential equation. What is a degree of a differential equation?                                           | 2       |
|       | (b)   | Discuss in brief the Wronskian of homogeneous solution.                                                              | 2       |
|       | (c)   | What is the significance of recurrence relation for any given homogeneous differential equation?                     | 2       |
|       | (d)   | Define Laplace, Fourier - Bessel, Mellin and Fourier transforms.                                                     | 2       |
|       | (e)   | Find the Laplace transform for 1.                                                                                    | 2       |
|       | (f)   | If Lagrangian is given as: $L = \left(\frac{1}{2}\right) m \left(r^2 + r^2 \theta^2\right) - V(r)$ ,                 | 2       |
|       |       | then prove that $P_{\theta} = \frac{\partial L}{\partial \theta} = mr^2 \theta$ .                                    |         |
|       | (g)   | What is generating function in canonical transformation?                                                             | 2       |
|       | (h)   | Prove for Poisson's bracket, $[X, X] = 0$ .                                                                          | 2       |
|       | (i)   | Show that total time derivative of Hamilton is                                                                       | 2       |
|       |       | characteristics function of W gives action of the system.                                                            |         |
|       | (j)   | On earth, where one finds the maximum effect                                                                         | 2       |
| IRD   | 1602  | of coriolis acceleration? Why?<br><b>6010102010100</b> ] 1 [ Contd.                                                  |         |
| വെവ-  | -TAA9 | ororogororo j radio de la Conta                                                                                      | • • • • |

- 2 Answer any two of following questions:
  - (a) Write a note on "exact equations-a final procedure to 7 find out the solution of any given homogeneous differential equation.
  - (b) Discuss in detail the complete solution of inhomogeneous equations when one integral is known as a complementary function.
  - (c) Obtain a solution for y'' + xy'' + y = 0 equation vsing Frobenius' method.
- 3 (a) Find the Laplace transform of t, t<sup>n</sup> and sinhkt. 7
  - (b) Find the Laplace transform of coskt. 7

## OR

- (a) Define canonical and extended canonical 7 transformations and derive the transformation equations only for generating function  $F = F_1$  (q, Q, t).
- (b) Define poisson brackets and prove that the poisson brackets remain invariant under canonical transformation.
- 4 Answer any two of following questions:
  - (a) Solve integral equation for orbit and obtain the following equation  $u = \frac{mk}{l^2} \left[ 1 + \sqrt{1 + \frac{2El^2}{mk^2}} \cos (\theta \theta') \right]$ . Why this equation is superior to the solution obtained by differential equation of orbit? Which geometrical shape this equation represents?
  - (b) Discuss the following effects observed due to coriolis acceleration with necessary figures :
    - (i) Whirling wind of cyclone and
    - (ii) Deflection of missile.
  - (c) Obtain Hamilton Jacobi equation and describe 7 its physical significance.

7

- ${f 5}$  Answer any two of following questions:
  - (a) Discuss in detail various aspects of Fourier sine 7 and cosine transforms.
  - (b) Discuss in detail the "evaluation of integrals an application of Fourier transform".
  - (c) Write a note on Virial theorem.
  - (d) Discuss in detail the scattering of particles. 7